
FUZZVPN: Finding Vulnerabilities in OpenVPN

Anqi Chen
Northeastern University

Cristina Nita-Rotaru
Northeastern University

Abstract
OpenVPN is one of the most widely used VPN protocols,
allowing for a connection to be securely proxied through an-
other computer. Due to the protocol’s critical role in securing
communications, it is essential that OpenVPN remains robust
against attacks. Previous work has discovered vulnerabilities
in OpenVPN, revealing its susceptibility to denial of service,
the potential for flow fingerprinting, and the risk of VPN pro-
tection being bypassed through operating system exploits or
TCP connection hijacking.

In this work, we take a systematic approach to finding
attacks by inferring the protocol’s specification. We study
OpenVPN configured with both the UDP and TCP variants.
Given that no standard exists and specification is sparse, we
first construct a detailed message sequence chart of the proto-
col handshake under the UDP and TCP modes, respectively.
We use this information to perform systematic adversarial
testing with malformed configurations, replay attacks, denial-
of-service, resilience to acknowledgments-related attacks, and
packet value modifications based on protocol semantics. We
found several new attacks: two new denial-of-service attacks
due to the replay of control and acknowledgment packets, the
incorrect handling of input validation for 17 protocol con-
figuration options, a scenario where due to an inconsistent
view of the state of the connection, the server sends data pre-
maturely to the client causing the client to ignore it, and a
scenario where a malicious client configured with weaker
authentication can degrade the performance of a victim client
configured with stronger authentication.

1 Introduction

A Virtual Private Network (VPN) is a protocol that ensures
privacy, security, and anonymity for users by masking their IP
address and encrypting their internet traffic. This is achieved
with the help of a VPN server that acts as an intermediary be-
tween the user’s device and the internet. The communication
between the user’s device and the VPN server is encrypted

and, for all the internet communication, the IP of the device
is replaced with the IP address of the VPN server.

VPNs are used by individuals, businesses, and organiza-
tions to improve their online security and privacy. Individuals
use VPNs for personal privacy and to prevent cyberattacks
and data breaches. Business organizations employ VPNs to
secure business communications and data transfers, when
employees work remotely. Universities use VPNs to allow
students and faculty to securely access internal network re-
sources from off-campus locations. A user study with around
1000 Americans found that 95% of adults are now familiar
with the technology, and 46% use VPNs [23]. A 2024 survey
by Statista showed around 23.1% of internet users worldwide
used a VPN [25].

Several VPN services are available such as ExpressVPN
[28], NordVPN [34], Surfshark [42], or AnyConnect [2].
Many such VPN services use public protocols such as Open-
VPN [36], WireGuard [9], Internet Key Exchange Version 2
(IKEv2) [13], and Layer 2 tunneling protocol (L2TP) [46].
1 2 Other VPN services use proprietary protocols such as
the Secure Socket Tunneling Protocol (SSTP) [1] owned by
Microsoft and the two protocols used by AnyConnect [2]
owned by Cisco. Decentralized VPNs like Orchid [7], Mys-
terium [33], Boring [18], DeeperNetwork [27], and HOPR
Network [30] aim to provide privacy and security benefits by
using a distributed network of nodes maintained by individual
users or independent operators.

Among the public VPN protocols, OpenVPN is one of the
most popular; the 2024 user study showed that the top 2 popu-
lar VPN software are NordVPN and Proton VPN, which both
support OpenVPN as one of the recommended underlying
protocols [23]. Surprisingly, while highly popular, the Open-
VPN protocol, unlike many other secure protocols, has not
been standardized yet by the IETF. A work-in-progress RFC
draft [41] is available but lacks many details such as a proto-
col message sequence chart, or description of the configura-

1Both IKEv2 and L2TP are often paired with IPsec.
2Older VPN protocols like Point-to-Point Tunneling Protocol (PPTP) [54]

are notorious for security problems and are less used nowadays.

tion parameters. Most of the protocol description is scattered
in several documents included in the OpenVPN repository
[36]. Our target in this paper is the open-source OpenVPN

project [36], which is known as the OpenVPN protocol [40],
with over 50 million downloads. There are other commercial
products by the OpenVPN company (the company behind
the open source community project that provides commercial
services and products), including the Access Server and 5
OpenVPN Connect Client implementations for different OS
platforms (Windows, iOS, Android, Linux, MacOS).

OpenVPN operates over either TCP or UDP, supports
many encryption algorithms including post-quantum proto-
cols, provides perfect forward secrecy, and runs on many plat-
forms, including Linux, Windows, macOS, iOS, Android, and
FreeBSD. OpenVPN is open source with 68 versions [35],
the most recent version being 2.6.14 released in April 2025.

As with all Internet protocols, security is a major concern
for OpenVPN. Previous work analyzing the security of Open-
VPN includes evaluating denial of service susceptibility [26],
fingerprinting the VPN network flow [51], exploiting oper-
ating system vulnerabilities to bypass the VPN [52], and hi-
jacking the TCP connection protected by VPN [45]. An older
version of OpenVPN, version 2.4.0, was audited by Quark-
slab, and the report [19] identified among other issues, two
denial of service vulnerabilities and insecure configuration op-
tions. Some memory bugs were found by a project [49] testing
OpenVPN with libFuzzer [31]. Finally, two works [20,50] that
analyzed security and privacy deployment issues of several
VPN software found a misconfigured “kill-switch" feature
leading to traffic leakage for the OpenVPN Access Server [20]
and several bugs in various OpenVPN client applications [50].

None of the aforementioned works with the exception of
the version 2.4.0 Quarkslab security audit [19], which is seven
years old, studied the OpenVPN protocol itself in depth. Sev-
eral changes were made to the OpenVPN protocol since ver-
sion 2.4.0, including adding protection to the denial of service
attack found in [26].

In this work, we study the security of the OpenVPN pro-
tocol’s implementation, 2.6.12, by inferring the protocol’s
specification. While OpenVPN uses TLS for part of its con-
nection establishment, it has its own handshake protocol that
includes more than just TLS messages. Since no RFC exists
for the OpenVPN protocol and its description is sparse and
incomplete, we first created a detailed Message Sequence
Chart (MSC) of the handshake protocol. We focused on the
OpenVPN over both the UDP and TCP variants, and we used
both passive and active learning approaches to construct the
specification. We first examined the captured packet trace of a
normal connection in Wireshark to understand the OpenVPN
packet structure and get a high-level knowledge of the packet
sequence for a normal OpenVPN connection establishment.
Once we learned the packet format, we employed a Man-
in-the-Middle setup to actively control the message-sending
progress, monitor the client and the server to understand the

message retransmission behavior, and learn the content of
TLS ciphertext messages from the verbose logs of the Open-
VPN execution.

Next, we examine three main classes of protocol
fuzzers: mutation-based (e.g., AFLNET [47]), generation-
based (e.g., PEACH [29]), and proxy-based (e.g., BLEEM
[53]). AFLNET [47] relies on reusing the initial seed, which
suits plaintext protocols (e.g. FTP, RTSP) but fails when faced
with OpenVPN’s session-specific encryption. PEACH [29]
requires detailed protocol packet structures and state models,
and requires code instrumentation to place the fuzzer in an
appropriate location, difficult to achieve for OpenVPN due to
its reliance on external cryptographic libraries. BLEEM [53]
does not have its code publicly available. Thus, none of these
protocol fuzzers are directly applicable to OpenVPN. These
limitations motivated our design of FUZZVPN, a proxy-based,
open-source fuzzer that not only detects memory bugs, but
also supports protocol-level vulnerability discovery such as
replay and denial-of-service attacks, as well as configuration
file fuzzing.

Equipped with the MSC, we created FUZZVPN to perform
systematic adversarial testing with malformed configurations,
replay attacks, resilience to acknowledgment-related attacks,
denial-of-service injection, and packet value modifications
based on protocol semantics. First, we confirmed that the at-
tack from [26] was fixed in version 2.6.12 under the UDP
mode, however, the attack is still possible for the TCP mode.
We also found several new denial-of-service attacks due to
the replay of control and acknowledgment packets, incorrect
handling of input validation in malformed configurations, a
scenario where due to an inconsistent view of the state of
the connection the server sends data prematurely causing the
client to ignore it, and a scenario where a malicious client
configured with weaker authentication can degrade the per-
formance of a victim client configured with stronger authenti-
cation.

We are also the first to document and study acknowledg-
ment packets in the OpenVPN handshake design. While
OpenVPN supports protection of the control and acknowledg-
ment packets through pre-configured keys, a recent paper [51]
found 180,858 OpenVPN endpoints without such protection
enabled. There is no description of the design goals for the
acknowledgment mechanisms other than “P_ACK_V1 – Ac-
knowledgement for control channel packets received" on the
official website of OpenVPN [40] and the OpenVPN devel-
opment website [39]. The Quarkslab technical report [19]
analyzing OpenVPN 2.4.0 mentions “It is notable that ac-
knowledgment can either be done by a dedicated P_ACK_V1
packet or by including it in P_CONTROL packets.". Our
study found that actually both acknowledgment methods are
provided at the same time. This redundancy made the protocol
resilient to some of the attacks we tried against the control
packets or acknowledgment packets when OpenVPN was con-
figured in the UDP mode, however, we found several attacks

that closed the connection in the TCP mode.
Our contributions are summarized as follows:

• We created a detailed MSC of the OpenVPN handshake
protocol in UDP and TCP mode respectively, using pas-
sive and active learning techniques.

• We created FUZZVPN which injects runtime attacks
that consider protocol semantics such as content and or-
der of messages in the protocol sequence. In addition to
protocol-based attacks, FUZZVPN also considers mal-
formed configurations. We run about 1000 scenarios that
took about 5.5 hours for the UDP mode and about 6
hours for the TCP mode.

• We show that a previous denial of service attack involv-
ing the replay of one type of control packet, was fixed for
OpenVPN 2.6.12 under the UDP mode, but the attack
is still possible when OpenVPN is configured with the
TCP mode.

• We found that the replay protection the tls-auth mode
claims to activate worked in the UDP mode but not in
the TCP mode.

• We analyzed OpenVPN’s acknowledgment mechanisms
and found that while the UDP mode is resilient to the
attacks we conducted, that is not the case for TCP.

• We found several new attacks: 2 are denial of service
through replaying of control or acknowledgment pack-
ets, 17 are improper handling of input option value in
a malformed configuration, one where an inconsistent
state between client and server results in the loss of data,
and a scenario where a malicious client configured with
weaker authentication can degrade the performance of a
victim client configured with stronger authentication.

2 Background

In this section we provide a high-level description of the Open-
VPN design, including specification and code availability. We
then overview previous work on OpenVPN security.

2.1 OpenVPN Overview
OpenVPN is a popular VPN protocol that is designed to trans-
port network traffic with confidentiality, authenticity, and in-
tegrity. When OpenVPN is enabled on a computer, a secure
tunnel is established with the VPN server, and the network
traffic can be encapsulated inside OpenVPN data packets in
an encrypted form and forwarded through the tunnel.

Common VPN protocols (aside from IKEv2/IPsec) share
some similarities in architecture: they require (1) a mecha-
nism to process and encapsulate the traffic flowing through
the VPN (typically through a NIC virtual interface), and (2)

Table 1: Comparison between VPN protocols

Protocol Virtual Interface Transport Layer Open-sourced

OpenVPN TUN or TAP TCP or UDP Yes
Wireguard TUN UDP Yes
IKEv2/IPsec implicit1 IKEv2 over UDP some3

L2TP/IPsec PPP L2TP over UDP some 2

SSTP PPP TLS over TCP No 4

a method to ensure the desired traffic is correctly directed
through the virtual interface such that encryption and decryp-
tion can be handled by the VPN software (typically through
modifying the routing rules). After both the VPN client side
and the server side have enabled the virtual interface and
updated their routing rules, the VPN tunnel can forward en-
crypted traffic through securely.

OpenVPN interaction with the OS. OpenVPN can be
used to forward both the link layer (layer 2 of the OSI model)
and network layer (layer 3 of the OSI model) traffic in the
encrypted tunnel. For the link layer traffic (Ethernet), a TAP
device (layer 2 virtual network device) will be created; while
for the network layer (IP), a TUN device (layer 3 virtual net-
work device) will be created. Wireguard protects only layer 3
(IP) packets and needs to create a virtual interface TUN de-
vice. IKEv2/IPsec protects only IP-level packets and may not
create an explicit virtual interface since the functionality is in-
tegrated into the operating system network stack. L2TP/IPsec
and SSTP need to create a Point-to-Point Protocol (PPP) vir-
tual network interface and protect only IP-level traffic. Table
1 shows a comparison between the different VPN protocols.

The OpenVPN protocol is logically divided in two channels
differentiated based on an opcode included in the first byte
of each packet. The first channel is the control channel which
carries session initialization, TLS handshake ciphers negoti-
ation, key renegotiation, and acknowledgement traffic. The
second channel is the data channel, which carries application
data in the form of encrypted Ethernet frames or IP packets de-
pending on how OpenVPN is configured. Data flows through
the data channel once the session is established, including
the symmetric keys used for encryption and integrity. The
opcode values have changed over time as the OpenVPN
evolved, and we provide a list of them in Table 3.

Data channel protection. The most important compo-
nent of OpenVPN is the connection establishment procedure,
which is based on TLS. While older OpenVPN versions have
supported both a pre-shared static key and a TLS mode, the
newer versions of OpenVPN have deprecated the static key
mode and made the TLS mode mandatory. OpenVPN packets
support both UDP and TCP, but UDP is recommended for
efficiency.

Control channel protection. In addition to the handshake

3Some implementations are open source and some are proprietary.
4SSTP is initially designed by Microsoft and proprietary.

messages, OpenVPN also implements its own acknowledg-
ment mechanism. There are three options to protect the in-
tegrity and privacy of the OpenVPN control channel packets:

i. tls-auth: This mode protects the integrity of the Open-
VPN control channel packets with a MAC calculated
using a static key shared among all clients and the Open-
VPN server.

ii. tls-crypt: This mode protects the integrity and privacy of
the OpenVPN control channel packets with a static key
shared among all clients and the OpenVPN server.

iii. tls-crypt-v2: This mode is similar to tls-crypt, but each
client has its own static key shared with the OpenVPN
server.

OpenVPN users can configure the service with any of the
above protections or none of them. While it might seem obvi-
ous that tls-auth should always be enabled, and a previous se-
curity audit [19] recommended that tls-crypt or tls-auth should
always be used, the recent work fingerprinting OpenVPN [51]
found 180,858 OpenVPN endpoints with tls-auth disabled in
their experiments with the Censys.io [12] database.

Configuration. One important aspect of OpenVPN design
is the configuration file, which provides the instructions and
settings necessary for secure and efficient communication. It
allows for a high degree of customization, enabling users to
tailor their VPN setup to their specific needs. Proper configu-
ration is essential to ensure that VPN operates securely and
effectively. Examples of information that can be configured
include: the IP address or hostname of the VPN server, port
number for the VPN connection, protocol (TCP or UDP), en-
cryption and authentication algorithms, location of the user’s
certificate, and private key files.

Code and specification. OpenVPN is available in an open-
source GitHub repository [36] and as a proprietary implemen-
tation called OpenVPN AccessServer [38]. OpenVPN relies
on OpenSSL (or mbedTLS) for TLS functionality. There is no
standard specification of how the protocol works other than
a work-in-progress OpenVPN RFC [41] that lacks many de-
tails and appears unfinished. Most of the protocol description
is scattered in several documents included in the OpenVPN
repository [36]. Another source that has a few more details
is the Quarkslab audit report of an older OpenVPN version
(2.4.0.) [19]. The report mentions that they relied solely on
the code since no written protocol specification was available.

2.2 Security of OpenVPN
Several attacks were previously found against OpenVPN, and
we categorize them below. We list the most representative
attacks in Table 2 in Appendix A.

Denial of service (DoS): These attacks aim to overwhelm
a VPN server with a flood of traffic or cause a server crash
by several means, rendering it unable to process legitimate

user requests and effectively disrupting service. The work
in [26] found that flooding the server with packets of type
P_CONTROL_HARD_RESET_CLIENT_V2 (this type iden-
tifies the first packet ever sent by a client to establish a connec-
tion to the server) can deny data transmission and connection
establishment for other clients. The Quarkslab technical report
analyzed an older version of OpenVPN 2.4.0 and found sev-
eral vulnerabilities including DoS caused by assert triggered
and DoS caused by exhaustion of packet identifiers [19].

VPN traffic fingerprinting: In traffic fingerprinting, at-
tackers analyze encrypted VPN traffic and identify patterns,
potentially determining which VPN protocol is being used
or even the nature of the data being transmitted. The work
in [51] showed how to fingerprint the network flow of Open-
VPN based on some key observations of fixed patterns of
OpenVPN traffic.

Man-in-the-Middle (MitM) attacks: In a MitM attack, an
attacker intercepts and potentially alters the communication
between the user, the VPN server, and the application server
that the user wants to visit with VPN protection. The work
in [45] showed that TCP connections forwarded through a
VPN tunnel can be hijacked by connection inference and
sending spoofed packets.

Operating system exploits: An attacker can exploit vulner-
abilities in the operating system of the VPN client or server,
to bypass VPN protection. The work in [52] showed that an
attack against the VPN client could leak traffic in plaintext out-
side the VPN tunnel by abusing the routing table exceptions
and spoofing the packet-sending address.

Memory bugs: Memory bugs may arise due to errors in the
VPN software implementation. The work in [49] fuzzed the
OpenVPN source code by intercepting system calls execution
and feeding a fuzzing corpus to the target functions with the
help of libFuzzer [31] and uncovered several memory-related
vulnerabilities.

Replay attacks: In a replay attack, an attacker intercepts
and retransmits valid data packets. If a VPN does not imple-
ment proper replay protection mechanisms, this can lead to
unauthorized actions being carried out, potentially leading to
denial of service. The work in [26] found that flooding by re-
playing a particular type of packet can deny data transmission
and connection establishment.

Older attacks: There are many attacks on deprecated ver-
sions of OpenVPN. The OpenVPN CVE website [3] lists
over 50 CVEs of OpenVPN. Several of them are related to
the cryptographic mechanisms (some due to vulnerabilities
in OpenSSL) or memory corruptions.

3 Learning OpenVPN Message Sequence
Chart of Connection Establishment

In this section, we describe our method for learning the details
of the OpenVPN connection establishment in both the UDP

and TCP modes. We observed the packet exchange behavior
and verbose logs of OpenVPN, read the source code of the
open-source implementation [36], and read scattered infor-
mation about OpenVPN in peer-reviewed papers or technical
blogs. Below we describe our approach, and then describe the
learned Message Sequence Chart (MSC) for OpenVPN.

3.1 Our Approach

Our learning was done in two phases. During the first phase,
we passively observed the protocol to gain information about
the packets, while in the second phase, we actively interacted
with the protocol to gain a deeper understanding of its behav-
ior.

Passive Learning. We started by seeking to understand
the OpenVPN packet structure and the high-level message
sequence for a normal OpenVPN connection establishment.
The packet structure knowledge helps write the parsing code
for OpenVPN packets, which facilitates later active learning.
We do this by observing the captured packet trace of a normal
connection in Wireshark. While information about some of
the fields in the OpenVPN control packets was available in
some documentation, they were not complete, and some re-
ferred to older versions. The notation we use below to denote
different fields are the names as reported by Wireshark.

We display and explain the packet header structure of the
OpenVPN layer for UDP and TCP mode in Fig. 4 and Fig. 5 in
Appendix B. The most important field is Opcode denoting the
OpenVPN packet type. The control packets fall in three cate-
gories: (1) packets that correspond to connection management
(starting a connection (P_CONTROL_HARD_RESET_CLI
ENT_V2 and P_CONTROL_HARD_RESET_SERVER_V2),
moving to a different key (P_CONTROL_SOFT_RESET
_V1)), (2) TLS related control packets (P_CONTROL_V1),
and (3) acknowledgment packets (P_ACK_V1).There is only
one Opcode for data packets (P_DATA_V2). Table 3 in Ap-
pendix B shows a summary of the main fields of the OpenVPN
header, including Opcode name, value, and description.

Active Learning. To understand the message-sending state
transition in-depth and to learn the content of ciphertext TLS
messages from the verbose logs of OpenVPN corresponding
to specific steps in the connection establishment, we employ
a MitM setup as shown in Fig. 1, supporting both the UDP
mode and TCP mode.

The setup allows us to actively control the message-sending
progress and monitor the behavior of both client and server by
looking at what messages are being sent and the verbose logs
of OpenVPN. We can stop the execution of the protocol after
a particular message or sequence of messages was sent and
observe the response from the server and the corresponding
logs from the OpenVPN executable. In Fig. 1, the “Connec-
tion progress control parameter i" means the total number of
control channel messages we allow the LearnVPN program
to forward to the client and server, e.g., when i = 1, the Learn-

VPN client
port_client

VPN server
port_server

manager LearnVPN
port_learnvpn

VPN config
Connection progress
control parameter i

manager logs

start/kill

start/kill

config server port = port_learnvpn

 VPN client logs
 - VPN log
 - pcap file

LearnVPN log

 VPN server logs
 - VPN log
 - pcap file

i

Figure 1: The LearnVPN system diagram

VPN program will only allow one message to be forwarded,
which is the first message from the client.

For the UDP mode, we find that 16 messages are required
for the connection to complete (M1 to M16 in Fig. 2). We
also found that under certain network conditions, two more
messages are sent: a control and an acknowledgment message,
and we display them with dashed lines (M17 and M18 in Fig.
2). We describe their role in Section 3.2. For the TCP mode,
14 messages are needed normally for the connection success
while under certain network conditions, two more messages
(M15 and M16 in Fig. 6) are needed.

3.2 OpenVPN Connection Establishment
Using the methodology described in the previous section, we
created the MSC of OpenVPN connection establishment (de-
fault TLS configuration) for both UDP and TCP. Below we
focus on the UDP mode (shown in Fig. 2) which is the rec-
ommended deployment, and we include the MSC description
for the TCP mode in Appendix C.

The handshake protocol aims to establish the data chan-
nel key that will be used for transporting application data
securely inside the VPN tunnel (we denote it with Kdata). Dur-
ing the handshake, two other keys are established. The first
one, denoted as Khs, is used for protecting the rest of the TLS
handshake messages after its establishment. The second one,
denoted as Kapp, is established as the TLS application record
data key.

We use the following notation in Fig. 2. We use sidc to de-
note Session ID, sids for the Remote Session ID, MID_array
to denote Message Packet-ID Array, and MID to denote Mes-
sage Packet-ID. For simplicity, we omit in the MSC descrip-
tion the field Message Packet-ID Array Length.

Starting a new connection. When a client wants to
start a new connection with a server, it sends a message
of type P_CONTROL_HARD_RESET_CLIENT_V2
packet and waits for a response with the type

Client Server

select sidc , MID = 0, MID_array = NULL
M1= P_CONTROL_HARD_RESET_CLIENT_V2, sidc, MID_array, MID

select sids , MID = 0, MID_array = [0]

M2= P_CONTROL_HARD_RESET_SERVER_V2, sids, MID_array, sidc, MID

MID = 1, MID_array = [0], generate aG in tls_client_hello

M3= P_CONTROL_V1, sidc, MID_array, sids, MID, tls_client_hello

MID = 1, MID_array = [1], generate bG in tls_sever_hello,
calculate b(aG), derive Khs from baG

M4= P_CONTROL_V1, sids, MID_array, sidc, MID, tls_server_hello,
tls_change_cipher_spec, [extensions]Khs

calculate a(bG), derive Khs from abG MID = 2, MID_array = [1]

M5= P_CONTROL_V1, sids, MID_array, sidc, MID, [Certi f icates,Certi f icateVeri f y,Finished]Khs

confirm Certi f icateVeri f y, Finished
M6= P_ACK_V1, sidc, MID_array = [1,0], sids

MID = 2, MID_array = [2,1,0]

M7= P_CONTROL_V1, sidc, MID_array, sids, MID, tls_change_cipher_spec, [Certi f icatec]Khs

MID = 3, MID_array = [2,1,0]

M8= P_CONTROL_V1, sidc, MID_array, sids, MID, [Certi f icateVeri f y,Finished]Khs

MID = 4, MID_array = [2,1,0],
derive Kapp from abG, generate Rc

confirm Certi f icateVeri f y, Finished, derive Kapp from baG

M9= P_CONTROL_V1, sidc, MID_array, sids, MID, [client version, etc., Rc]Kapp

M10= P_ACK_V1, sids, MID_array = [2,1], sidc

MID = 3, MID_array = [3,2,1], generate tls_session_ticket

M11= P_CONTROL_V1, sids, MID_array, sidc, MID, [tls_session_ticket]Kapp

M12= P_ACK_V1, sidc, MID_array = [3,2,1,0], sids

MID = 4, MID_array = [4,3,2,1], generate RsM13= P_CONTROL_V1, sids, MID_array, sidc, MID, [Rs]Kapp

M14= P_ACK_V1, sidc, MID_array = [4,3,2,1], sids

MID = 5, MID_array = [4,3,2,1] M17= P_CONTROL_V1, sidc, MID_array, sids, MID, [PUSH_REQUEST]Kapp

M18= P_ACK_V1, sids, MID_array = [5,4,3,2,1], sidc

MID = 5, MID_array = [4,3,2,1], calculate Kdata

M15= P_CONTROL_V1, sids, MID_array, sidc, MID, [PUSH_REPLY, configuration details]Kapp

calculate Kdata M16= P_ACK_V1, sidc, MID_array = [5,4,3,2], sids

Figure 2: MSC of OpenVPN handshake (UDP mode, default TLS configuration), some fields omitted for simplicity.

P_CONTROL_HARD_RESET_SERVER_V2 packet from
the server (messages M1 and M2 in Fig. 2). The goal of these
two messages is to exchange the session identifiers at both
ends, including sids, the Session ID of the VPN server, and
sidc, the Session ID of the client. After this exchange, the
TLS key establishment phase starts.

TLS key establishment. The goal of this phase is to es-
tablish a secure TLS channel, which is then used to protect
the data channel key generation phase. OpenVPN relies on
the OpenSSL or mbedTLS library to implement the TLS
functionality. Below we describe the message flow and omit-
ting explicit acknowledgments. The default algorithm used
for TLS handshake is 0x25519 ECDH (Elliptic Curve Diffie
Hellman) [37] [14].

First, the client sends a TLS Client Hello record, which in-
cludes the client-side public key aG in the Key_Share record,
i.e., the client-side ECDH contribution that will be used later
to compute the TLS pre-master secret (message M3 in Fig.
2). Then the server will reply with 2 OpenVPN packets in-
cluding several TLS records: TLS Server Hello including the
server-side public key bG in the Key_Share record, Change
Cipher Spec implying that the messages afterward will be
ciphertext, and some application data records including ex-
tensions, server’s certificate (Certi f icates), CertificateVerify,
and Finished (messages M4 and M5 in Fig. 2). Note that after
obtaining aG from the client, the server can now compute
the ECDH secret as b(aG), i.e. the TLS pre-master secret,
serving as the basis for generating the Khs and Kapp keys to
protect TLS and data channel key generation messages.

Upon receiving messages M4 and M5 from the server, the
client can also compute the same ECDH shared secret as
a(bG) and derive various further keys. The client will reply
with 3 OpenVPN packets including several TLS records in-
cluding a Change Cipher Spec record and some application
data records including client certificate (Certi f icatec), Cer-
tificateVerify, Finished (M7, M8 in Fig. 2). This concludes the
TLS phase for the client. The server then sends an OpenVPN
packet where the TLS application data records include the
TLS session ticket (M11 in Fig. 2). This concludes the TLS
phase for the server.

Data channel key generation phase. The client starts
the data channel key generation phase with the message M9
where, along with the client version, he sends the client-side
random material Rc. On the server side, this is message M13,
which contains the random contribution of the server Rs. The
deprecated method uses both Rc and Rs to compute the data
channel key, while now OpenVPN uses the TLS key exporter
[21] method, and Rc and Rs are sent but not used, just for
backward compatibility. Both Rc and Rs are encrypted with
Kapp, the key that was negotiated via TLS.

After receiving M13 and M15 from the server, the client
can compute the data channel keys. After the data channel
key is established for both sides, the data channel OpenVPN
packets which start with an Opcode of P_DATA_V2 can be

transported through the VPN channel. The VPN channel con-
sists of virtual network interfaces launched on both sides and
the routing policy updated to direct certain traffic through the
VPN channel. The virtual interface helps to exchange traffic
between kernel space and user space for encryption or decryp-
tion by VPN software. The updated routing policy ensures
the traffic desired to be protected is directed through the VPN
tunnel.

A normal connection establishment takes only 16 mes-
sages to complete in the UDP mode. When the connection
is tampered with or due to other network factors the client
cannot receive M15 in time, the client will send one more
P_CONTROL_V1 packet M17 to push the server to reply (i.e.
push the server to send M15). The server explicitly acknowl-
edges this request (M17) with M18. We show M17 and M18
with dashed lines in Fig. 2.

Reliability. OpenVPN implements an explicit acknowl-
edgment mechanism as it does not always operate over TCP.
All OpenVPN acknowledgment messages have the Opcode
P_ACK_V1. There are four acknowledgment packets sent
from the client and one acknowledgment packet sent from
the server to acknowledge the message receiving progress
explicitly and to ensure reliability in the UDP mode.

All the OpenVPN control channel messages, except the
P_ACK_V1 messages, have the MID field in the OpenVPN
header. We marked the MID value for each message in Fig.
2. Besides, all the control channel messages including the
P_ACK_V1 messages have the MID_array field in the Open-
VPN header. We also marked the values of MID_array field
for all the messages in Fig. 2. Reliability can be done by
checking the MID_array on P_CONTROL_V1 control chan-
nel messages, and explicitly on P_ACK_V1 messages. For
both of them, the value of MID_array is the array of current
received messages’ MID’s, and by checking which messages
have been received, a side can find out which messages have
not been received and retransmit them.

4 FUZZVPN Design

In this section, we describe the design of our fuzzing sys-
tem. We first describe our design goals and give a high-level
overview, then we describe the attack strategies supported by
our system and finally present what information is captured
with each experiment to analyze each of them and determine
if it is a vulnerability that can be exploited by an attacker.

4.1 Design Goals and High-level Overview
FUZZVPN aims to test the OpenVPN open-sourced imple-
mentation from several aspects to find security vulnerabilities.
We want our testing platform to achieve several goals.

Platform independent: Our testing framework should not
be limited by the implementation language of the VPN soft-
ware or the operating system that the VPN runs on.

Protocol-logic aware: Our testing framework should be
able to test protocols-logic aware scenarios, i.e., to not only
change or inject packets but also impact the normal protocol
message flow by delaying, dropping, reordering packets, etc.,
while tracking the states of the involved parties.

Not invasive: Ideally, we would like the platform to not
change the code running on both the client and server side.

Test both the client and the server: Finally, we would like
our platform to allow for testing both the server and client
implementation by being able to interact with both the client
and the server implementations.

With these goals in mind, we chose a design based on
the one we used to learn the MSC of the protocol and in-
spired by [53]. Fig. 3 shows a diagram of our testing setup.
The manager module automates all the experiments and logs
results, taking as inputs VPN configuration files and the sup-
ported fuzzing strategies. The manager can start and kill the
client, server, and FUZZVPN program. The fuzzing strategy
on the arrow in Fig. 3 acts as an input parameter of FUZZVPN
which will apply the actual fuzzing actions.

FUZZVPN is a UDP (or TCP) proxy we implemented with
the help of twisted library [44], which can handle UDP (or
TCP) packets sent to the corresponding port that the proxy
is bound to, apply fuzzing actions on the intercepted packets,
and forward packets to a desired destination if needed.

As shown in Fig. 3, we configured the VPN client to run
on port_client, and let it connect (i.e. send the packets for
completing the connection) to FUZZVPN which runs on
port_fuzzvpn. Meanwhile, we configure the VPN server to
run on port_server. We let FUZZVPN serve as a MitM proxy,
forwarding packets from the client to the server, thus the
server will believe a client is running on port_fuzzvpn and
reply packets to it. Upon receiving the packets from the server,
FUZZVPN can also apply the fuzzing strategy and then for-
ward packets to the client. The only difference between UDP
mode and TCP mode is using the UDP ports (and a UDP
proxy) or TCP ports (and a TCP proxy).

We compiled the open-sourced OpenVPN implementation
with AddressSanitizer (ASan) [24] and Undefined Behavior
Sanitizer (UBSan) [32] to check for memory bugs and un-
expected behavior during program execution (ASan, UBSan
log output in Fig. 3). We also use tcpdump [43] to intercept
the packets on the client and server side, which generates the
pcap file output in Fig. 3.

4.2 Attack Strategies Supported
Our system supports several testing strategies such as
(1) malformed configuration files; (2) replay packets; (3)
field-level modification; (4) reordering packets; and (5)
acknowledgment-related attacks.

Malformed configuration file testing. We craft malformed
client and server configuration files with illegal values or
formats, etc. to feed the OpenVPN program and monitor its

VPN client
port_client

VPN server
port_server

manager FUZZVPN
port_fuzzvpn

VPN config

Fuzzing strategies
- replay select
- malformed config
- 1p1f howto
- reorder bunch
- replace howto
-

manager logs
(crashes of VPN, etc.)

fuzzing strategy

start/kill

start/kill

config server port = port_fuzzvpn

 VPN client logs
 - VPN log
 - ASan, UBSan log
 - pcap file

FUZZVPN log

 VPN server logs
 - VPN log
 - ASan, UBSan log
 - pcap file

Figure 3: The VPN fuzzing system diagram

reaction. We also tried inconsistent settings at the client and
server that can potentially result in downgrade attacks. We
designed different fuzzing methods depending on the specific
configuration option type and semantics. For options with
numeric values (e.g. “port", “lport", "keepalive", etc.), we
changed them to zero and a very large number (currently we
use 270) that overflows 64 bits. For all the options with string
values, we insert a NULL character after the first character of
the string. We created a script to generate all the malformed
configuration files and test them with the OpenVPN program.
In total, we generated 242 malformed configuration files (half
are for the UDP mode and the rest are for the TCP mode),
including both for the server and client.

Denial of service with replay packets. Inspired by [26],
which only focused on initiation packet flooding, we designed
a more comprehensive way to test the resilience of OpenVPN
against replay attacks with different-typed packets, especially
P_CONTROL_V1 and P_ACK_V1 packets.

Field value modification. The field-level modification and
reordering strategies are controlled by the fuzzing parame-
ters specified by the experiment manager. The experiment
manager specifies one set of fuzzing experiments by a set
of parameters: (1) fuzzing_way, which implies the selected
fuzzing strategy, (2) detailed parameters.

When f uzzing_way = 1p1 f , where 1p1f means 1-packet-
1-field, we will change a packet’s selected field with a certain
method, so the following parameters will be pkt, f ield and
howto, which means the selected packet, field, and how to
change the field value.

For fields that have a limited number of valid values (e.g.
Opcode, MID, etc.), howto could be (1) rand_vali, which
means randomly choosing a valid value to assign the field; (2)
rand_any, which means assigning a random value; and (3)
rand_zero, which means assigning zero value for the field.

For other fields that have a specific numeric value (e.g. Ses-
sion ID, Remote Session ID, MID_array Length, etc.), howto
could be (1) rand_any or (2) rand_zero, or values of other

legitimate sessions from other clients.
Reordering of a sequence of control packets. When

f uzzing_way= reorder, it means we will reorder several mes-
sages from one side, then the following parameter will be
bunch, meaning the selected set of messages from one side,
which could be s1, c1, and s2, with s1 denoting the first set
from the server (i.e., M4 and M5 in Fig. 2), c1 denoting the
first set from the client (i.e., M7, M8, and M9 in Fig. 2) and s2
denoting the second set from the server (i.e., M11, M13, and
M15 in Fig. 2). For the TCP mode, s1 denotes the M4 and
M6 in Fig. 6 which include 3 OpenVPN packets, c1 denotes
the M8 in Fig. 6 which includes 3 OpenVPN packets, and
s2 denotes the M10 in Fig. 6 which includes two OpenVPN
packets.

Acknowledgement-related attacks. We are interested in
fields with important semantics, for example, the value of
MID_array contributes to the acknowledgment mechanism,
so we designed some specific strategies related to the meaning
of this field. We support the following actions:

1. Remove one element out of the array: by removing ele-
ments from the array we control what message should
not be acknowledged.

2. Replace one element of the array: by replacing an ele-
ment of the array we acknowledge packets are not mean-
ingful at that time in the protocol message sequence.

3. Replace with an earlier P_ACK_V1 packet: by replac-
ing a P_ACK_V1 packet from the client with an earlier
P_ACK_V1 packet we reacknowledge old packets and
not send the acknowledgement for the recent packets.

4. Replace sidc and sids with the other client’s: by replacing
the sidc and sids values of a P_ACK_V1 packet (from
client to server) we inject acknowledgement messages
corresponding to other session ids.

5. Drop P_ACK_V1 packets: by dropping some or all the
P_ACK_V1 packets during the handshake of OpenVPN
we test the robustness of the handshake to such attacks.

4.3 Analyzing the Behavior

For the malformed configuration file testing, we feed them
to the OpenVPN program, monitor whether it reports any
warnings or errors, and decide if it is expected behavior.

For the replay attacks, we monitor the logs from both client
and server to see if any defense is triggered or any detection of
the replay traffic. Meanwhile, we monitor connection failure
messages in the logs of the OpenVPN executable and measure
the attack effect on a legitimate user’s VPN data channel
throughput.

For the other attacks such as changing the field values and
reordering, we monitor the program statuses of both the client
and server to see if any unexpected program crashes happen.
To help analyze the vulnerable case, for each fuzzing experi-
ment, we collect (1) client and server execution logs (provided

by OpenVPN); (2) client and server stderr (mostly ASan and
UBSan output); (3) client and server-side packet traffic cap-
tured (by tcpdump [43]); (4) the FUZZVPN program output.

We also search the logs for any indication of a successful
connection. OpenVPN logs indicate client-side and server-
side connection success respectively through the follow-
ing messages: Sc=“Initialization Sequence Completed"; and
Ss=“Peer Connection Initiated with [Client Address]".

5 Results

In this section, we present the results of our evaluation. We
first describe the methodology we used, then we show that
a previous attack has been fixed for the UDP mode but it is
still possible for the TCP mode (the findings about previous
attacks are discussed in Appendix E.1.). Then we describe
several new vulnerabilities we found. Finally, we investigate
the resilience to ACK-related denial of service attack sce-
narios and we found that while the UDP mode protocol is
resilient to them, the TCP mode is not. The sanitizers did not
report any memory bugs in our experiments.

5.1 Methodology
Platform. Our experiments are done on a machine equipped
with two Intel Xeon Silver 4114 CPUs (each with 10 physical
cores and Hyper-Threading enabled, providing a total of 40
logical processors), x86_64 architecture, 188 GB of physical
memory, and Ubuntu 24.04 operating system. We created a
docker image where we added the open-source OpenVPN
repository and the required configuration files, and we used
the image to create a docker container, mapping the path of our
fuzzing source code to a directory inside the docker container.
The docker version we used in our experiments is 27.1.1. We
ran the OpenVPN version 2.6.12. We will open-source our
Dockerfile, docker image, and all the relevant source code.
Our code is available at https://doi.org/10.5281/zeno
do.15476514

FUZZVPN setup. As we mentioned in Section 4.1, we
configured FUZZVPN as a MitM by changing the ports
where the VPN client and VPN server will run and connect.
We select port_client = 40000, port_ f uzzvpn = 50000, and
port_server = 1194 (the default port number OpenVPN usu-
ally uses.) The ports are used for both UDP and TCP config-
uration modes of OpenVPN. In Fig. 3, we created a script
to manage all the fuzzing experiments, feeding the fuzzing
strategy parameters to FUZZVPN program, as explained in
Section 4.2. For fuzzing strategies that change the content or
sending order of legitimate packets, we run each experiment
for 60 seconds, during which either a crash happens or the
manager will kill all the running programs and start a new
experiment.

Automated and manual analysis. To get a detailed exe-
cution log of both OpenVPN client and server, we added a

https://doi.org/10.5281/zenodo.15476514
https://doi.org/10.5281/zenodo.15476514

configuration option “−− verb 9” when we ran the OpenVPN
program, which we found to be verbose enough for our in-
vestigation [37]. We also collected logs of ASan and UBSan
stderr messages to check memory and undefined behavior
bugs. Finally, we collected logs of FUZZVPN and used tcp-
dump [43] to capture the packets on both the client and server
sides. We analyzed the logs both automatically and manu-
ally to confirm a suspected vulnerability. We created a script
to analyze the logs by searching for errors and warnings, as
well as key sentences signaling the connection success in the
execution logs of both the client and server.

Attack scenarios. Overall we tried about 1000 scenarios
and our fuzzing experiments took about 5.5 hours for the UDP
mode and 6 hours for the TCP mode. The analysis took more
time because it also involved code inspection to confirm the
experimental findings.

5.2 New Denial-of-Service Attacks

In this section we discuss several new vulnerabilities we dis-
covered with the OpenVPN 2.6.12 version implementation.
They are denial of service attacks by replay packets, thus they
can not be defended only with cryptographic mechanisms.
We note that in the UDP mode, when the tls-auth option is
enabled, some rate-limiting is implemented but the defense
is not very effective; when tls-auth option is not enabled, no
rate-limiting is implemented. In the TCP mode, even when
the tls-auth option is enabled, we do not observe any replay
protection being effective. It might seem obvious that tls-auth
should always be enabled, however, several works like the
recent work in fingerprinting OpenVPN [51], found 180,858
OpenVPN endpoints with tls-auth disabled in their experi-
ments with the Censys.io [12] database.

We found attacks with two type of packets:
P_CONTROL_V1 and P_ACK_V1. The attacks we
found can prevent the client’s connection whose packets
we replay in the attack. Further investigation also shows
that the replay attacks also harm the server’s availability
and decrease the other legitimate user’s VPN data channel
throughput. Below we describe the impact of the attacks,
and then describe experiments conducted in more realistic
settings in Google Cloud.

1) Denial of service with replay of P_CONTROL_V1
packets. P_CONTROL_V1 is the most common packet type
among all the control channel packets, 9 packets with this
type are exchanged between the client and server to complete
the VPN handshake in the UDP mode and 10 for the TCP
mode. We found denial of service where an attacker observing
a client connecting to a server, replays packets from this very
connection to the server, making the connection establishment
fail.

We found that when tls-auth mode is not used, for the
UDP mode, flooding the server by replaying 10,000,000
P_CONTROL_V1 packets (around the rate of 25 MB/second)

can block the normal connection attempt from the client, and
the server does not detect the replay attack, only reporting the
error message “TLS key negotiation failed to occur within
60 seconds (check your network connectivity)". For the TCP
mode, sending the same number of packets resulting in an
attack rate of 16 MB/s showed similar results.

Our code inspection further revealed that when tls-auth
mode is enabled in the UDP mode, a replay protection is ac-
tivated. Specifically, a field called Replay-Packet-ID in the
OpenVPN packet header and a sliding window replay check
algorithm are added. The sliding window replay check algo-
rithm takes two input parameters “size" n and “time" t, which
can be configured with the option “–replay-window n t", and
the default values are n = 64 and t = 15. We confirmed in
experiments when tls-auth is used, the replay check function-
ality takes effect for the UDP mode, but not for the TCP mode.
The denial of service worked for both UDP and TCP modes.

Finally, we note that the official manual of OpenVPN 2.6
[37] seems to imply that replay protection is provided only
for the data channel packets. A more detailed explanation of
how control packets are treated is needed.

2) Denial of service with replay of P_ACK_V1 packets.
P_ACK_V1 packets are another common type of packets
serving as explicit acknowledgments in both UDP and TCP
modes.

When no tls-auth mode is used, for the UDP mode, flood-
ing the server with 10,000,000 replayed P_ACK_V1 packets
(i.e. around the rate of 218 KB/second) caused similar results
as flooding with P_CONTROL_V1 packets, the normal con-
nection attempt from the client is blocked with error message
“TLS Error: TLS key negotiation failed to occur within 60
seconds (check your network connectivity)" in the logs of
both the client and the server. For the TCP mode, sending the
same number of packets around the rate 1.6 MB/s showed
similar results. When tls-auth mode is used, we found similar
behavior as in the above replay attack, i.e., UDP mode gener-
ated warnings but did not prevent the attack while TCP mode
even did not generate warnings.

3) Attack evaluation in Google Cloud. To better evaluate
the effect of the above replay attacks, we also tested them
in more realistic network conditions in a Google Cloud en-
vironment. We set up 3 VMs as the OpenVPN server and
two clients: the VMs are e2-standard-2 x86-64 machines with
8 GB memory and the OS Ubuntu 20.04, the server VM is
located in us-west4-b zone while the two client VMs are in
us-central1-a zone. We launched the replay attacks with pack-
ets from Client1 and observed the effects on the OpenVPN
data channel throughput of Client2. We used the iperf3 tool
to measure the throughput. We summarize the results in Table
4 and explain two scenarios when the TCP mode was con-
figured. We present a detailed description of attack scenarios
with OpenVPN configured in the UDP mode in Appendix
E.2.

In the TCP mode with no tls-auth, the replay of 10,000,000

P_CONTROL_V1 packets at the rate of 212 MB/s can almost
block Client2’s data channel traffic (throughput is less than
1 MB/s in comparison to a throughput of around 168 MB/s
achieved when no attack takes place). We looked into the
server logs and found that the replay attack can cause the
server “Fatal TLS error (check_tls_errors_co), restarting”,
which might explain why Client2’s data channel got almost
blocked. Replay of 10,000,000 P_ACK_V1 packets, which
are shorter packets, at the rate of 50 MB/s also caused a serious
decrease in throughput from 160 MB/s to 30 MB/s.

The replay protection of tls-auth seems to not work in TCP.
In TCP with tls-auth, sending 10,000,000 P_CONTROL_V1
packets at the rate of around 60 MB/s can almost block
Client2’s data channel to be less than 1 MB/s, compared
with the normal throughput 116 MB/s. Replay of 10,000,000
P_ACK_V1 packets, which are shorter packets, at the rate of
10MB/s also caused a serious decrease in throughput from
116 MB/s to 30 MB/s.

5.3 Improper Input Validation for Configura-
tions

OpenVPN supports complex configuration files. We tested
numerous malformed configurations and report our findings
below.

Port validation. We noticed that when we provided a server
(or client) configuration file with a port number (e.g. 70000)
exceeding the valid port number range (from 0 to 65535 on
Linux Systems), the OpenVPN implementation does not re-
port any error, whether under the UDP or TCP mode, but
instead just chooses another valid port for usage without in-
forming the user. We also tested the OpenVPN Connect client
software (Mac version) which correctly reported the error of
an invalid port number and did not make the change. Our
communication with the OpenVPN team confirmed the port
validation vulnerability. The root cause lies in glibc: when
passing a numeric string as port/service to the getaddrinfo
function representing a number larger than 65535, the func-
tion will not complain and will simply extract the lowest 16
bits of the converted number. A patch is now under develop-
ment. The MAC version is a different code base and that is
why the error was not present.

Options validation. We observed that whether under the
TCP or UDP mode, the OpenVPN implementation applied
stricter checking rules for some configuration options, and less
strict checking for other options. For example, when we as-
sign values that should obviously be rejected to some options
with a strict validation rule, like the option "replay-window",
the log will report "Options error: replay-window window
size parameter (-1) must be between 0 and 65536"; however,
for some other options like "hand-window" no warnings are
provided. One interesting case is the option "max-clients",
where when we assign 0 to it, the program will crash with a
"fatal error" since it triggers an assertion failure in the source

code; however, when we assign 270, the program will report
"Options error: –max-clients must be at least 1". In Appendix
E.3, we provide more details on similar scenarios in Table 5.

5.4 Server Prematurely Sends Data
We found two attacks that cause an inconsistent view of the
client and server concerning the state of the connection. We
confirmed both scenarios through code and logs inspection.

For the first attack, we notice that the OpenVPN server
will start sending DATA_V2 packets immediately after send-
ing the last P_CONTROL_V1 packet M15 to the client. If
we drop M15, we will observe the client sending several
P_CONTROL_V1 packets (i.e. M17 [PUSH_REQUEST]
packets) trying to push the server to send M15. If we drop
the M17 packets from the client as well as the reply packets
from the server, then the client will face connection failure
while the server can keep sending P_DATA_V2 packets. The
root cause of server-side premature data sending is that the
server believes it has connected successfully too early before
confirming receiving the last P_ACK_V1 packet M16 from
the client. Also, by examining the server logs, we observe
the server logs the connection success sentence Ss indicating
connection success with the client even before it sends out
M15. The client does not think the connection succeeded and
did not log its connection success sentence Sc and by looking
at its verbose log, we confirm that the client’s connection
attempt is blocked at this point.

The second variant is more concerning. We created an at-
tack scenario where the attacker drops M15 packets up to a
threshold and then resumes sending it to allow the client to
successfully finish the handshake. In this case, the client is
not aware that it actually dropped data that was sent prema-
turely by the server. While applications can implement some
additional checks, this behavior is not specified anywhere and
can be problematic for applications that depend on initial data
not being lost and are not aware of this behavior.

For the TCP mode, we found similar behavior. Refer to
the MSC in Fig. 6 in Appendix C, this means the server
will start sending data immediately after it sends out M13
without confirmation of receiving M14. If we drop the M13
and possible packets from the client afterward, then the server
ends up thinking the connection is a success and starts sending
data channel packets while the client is trapped in connection
failure. Also, if we resume the sending of the packet after a
period of time, then the connection can still be successful,
although the client misses some data packets from the server.

5.5 ACK-related Attacks
There is almost no documentation about the design and in-
tended behavior for acknowledgments for the OpenVPN over
UDP. The official website of OpenVPN [40] as well as the
OpenVPN development website [39] only says “P_ACK_V1

– Acknowledgement for control channel packets received.".
The older technical report [19] that analyzed OpenVPN 2.4.0
only says “It is notable that acknowledgment can either be
done by a dedicated P_ACK_V1 packet or by including it in
P_CONTROL packets.".

Unlike TLS for example, which operates over TCP and
assumes reliable delivery of the packets, the OpenVPN hand-
shake, while using TLS, has to implement its own acknowl-
edgment mechanism. Previous works overlooked the function-
ality of the ACK messages (i.e., P_ACK_V1 packets) used
during the OpenVPN handshake, for example, in the work [8],
all the ACK messages are omitted in the inferred OpenVPN
session. In this section we describe several fuzzing experi-
ments specific to the ACK messages and uncovered that the
protocol is resilient against many ACK attacks under the UDP
mode but not under the TCP mode.

The most important field of a P_ACK_V1 packet related
to the acknowledgment progress is the field called Message
Packet-ID Array, as we explained in Section 3.2. When no
tls-auth mode is used, i.e., no HMAC protection, we can arbi-
trarily change the field of OpenVPN packets and the altered
packet may still get processed. We performed all the strategies
listed in Section 4.2 about acknowledgments.

UDP mode. The strategies we tried could not stop the
OpenVPN handshake from succeess in the UDP mode. We
managed to slow it down by causing packets to be retrans-
mitted as expected. We looked into how the acknowledg-
ment mechanism works during the OpenVPN handshake,
which is a design of the specific protocol to provide more
reliability when OpenVPN packets are transported over the
unreliable UDP protocol. We found that not only the ACK
messages can explicitly contribute to the acknowledgment
processing and state transition advancement of the protocol,
but the P_CONTROL_V1 packets can help in that, too, par-
tially because they also have a Message Packet-ID Array field
in the header. This factor may explain why OpenVPN behaves
so robustly under the above ACK attacks. We do not know if
this was a deliberate design or just a configuration artifact.

TCP mode. For the TCP mode, OpenVPN still uses the
ACK mechanism (see the MSC in Appendix C for details).
Unlike UDP mode’s resilience to the acknowledgment-related
attack strategies in 4.2, we found that for the TCP mode,
there are several successful attacks that prevent the connection
from finishing. They are: (1) changing the Message Packet-ID
Array of M_12 (or M_11 or M_7 or M_5) in rand_zero or
rand_vali ways; (2) changing the sid (or sidr) field of any
ACK messages in rand_zero or rand_any ways; (3) changing
the sid and sidr fields of the ACK messages from client to
server to be values of the other current legitimate client’s.

5.6 Performance Attacks

We also found another scenario in the TCP mode, where a
malicious client connecting to a server with a weaker authen-

tication setting can create a performance degradation for a
victim client configured with stronger authentication. Specif-
ically, when we configure the server in TCP tls-auth mode,
we can launch a performance attack by letting a client con-
nect with no tls-auth configured, and cause a decrease in
data channel throughput for a victim user configured with tls-
auth from 180 MB/s to around 120 MB/s (in the Google
Cloud setup described in Section 5.2). The server gener-
ates log error messages “TLS Error: cannot locate HMAC
in incoming packet from [IP: port address]... Fatal TLS er-
ror (check_tls_errors_co), restarting". In comparison, for the
UDP mode, we observe that the server only generated the
log message “TLS Error: cannot locate HMAC in incoming
packet from [IP: port address]" without the “restarting" error
message while the data channel throughput of the legitimate
client is not affected.

The attacks in Section 5.2, 5.4 and 5.5 require an on-path
attacker that can intercept, modify, drop and forward pack-
ets. On-path attackers are realistic and well-documented in
a range of practical scenarios. For example, adversaries in
public Wi-Fi networks can perform ARP spoofing to intercept
and manipulate VPN traffic. In enterprise settings, a malicious
insider may control internal routing to position themselves
in the communication path. At the ISP or nation-state level,
middleboxes equipped with deep packet inspection can ob-
serve and tamper with encrypted tunnels. Even in cloud envi-
ronments, misconfigured virtual networks may inadvertently
expose packet flows to neighboring tenants. Since VPNs are
actually designed to be used over completely untrusted net-
works, and as such, packet loss, retransmissions, and mangling
are expected and fully part of the threat model.

6 Related Work

In this section, we discuss related work other than related
work for OpenVPN which we reviewed in Section 2.2. First,
we discuss attacks that were found against VPNs, then we
discuss the formal analysis conducted to prove the security
properties of VPNs. Finally, we discuss general-purpose net-
work protocol fuzzers, even if none of them were applied to
VPNs: they tend to think of the network protocols as normal
software and don’t explore the DoS replay attacks, configura-
tion validation testing, or protocol execution soundness.

Security of VPNs. Several works studied the security of
VPNs, focusing on denial of service, fingerprinting, connec-
tion hijacking, or misconfigurations. The work in [20] creates
a tool to locate security misconfigurations and privacy leak-
ages. The work in [26] uncovers several DoS vulnerabilities.
The work in [45] proposed in/on-path attacks to hijack the
TCP connections forwarded through VPN tunnel by infer-
ring virtual IP, connection timing, and SEQ/ACK. The work
in [52] manipulated the routing exceptions added to the rout-
ing table to make the victim send arbitrary traffic in plaintext
outside the VPN tunnel. The work in [50] evaluated thousands

of universities’ academic VPN setups and uncovered some
common configuration vulnerabilities. The work in [15] used
Zero-shot machine learning for website fingerprinting, i.e.,
identify which website a user is visiting over an encrypted
tunnel. The work in [6] uncovers some client-side L2TP/IPsec
configuration vulnerabilities that can be exploited to strip off
traffic encryption or bypass the VPN server authentication.

Formal analysis of VPNs. To the best of our knowledge,
the only VPN for which formal analysis was conducted is
WireGuard. A work-in-progress paper [10] by the WireGuard
company applied TAMARIN to verify the security proper-
ties of the key exchange of the WireGuard protocol. The
work in [22] proposed a unified formal symbolic model of
WireGuard protocol using automatic cryptographic protocol
verifiers SAPIC+, PROVERIF, and TAMARIN, and found
a flaw of the anonymity of the communications. The work
in [11] builds a description of WireGuard’s key exchange
phase and then proves the security of WireGuard’s key ex-
change protocol under standard cryptographic assumptions.

Fuzzing on OpenVPN that did not find any vulnera-
bilities. There are also two efforts to find vulnerabilities in
OpenVPN by looking at the protocol state machine. The work
in [8] applies the protocol state fuzzing techniques to infer the
state machine of OpenVPN, using black-box fuzzing with the
LearnLib library. The work in [48] works on understanding
how OpenVPN works on a coarse level and attempted some
fuzzing by corrupting client-side messages. Their message
sequence chart is not as detailed as the one we created, they
overlooked details of ciphertext TLS messages’ content, data
key negotiation details, and the acknowledgment messages.
Both works infer models that are less detailed than ours and
were not able to find any vulnerabilities.

Fuzzers for network protocols in general. Several fuzzers
were proposed for network protocols. Most of them focus
on memory-related bugs, without exploring the replay DoS
replay attacks, configuration validation testing, or protocol
execution soundness checks, and can not be directly applied
to OpenVPN.

Generation-based fuzzers like PEACH [29] require the user
to manually specify the model logic of protocol implementa-
tion, which is error-prone and there is no RFC for OpenVPN
describing the protocol logic details.

When no specified model is given, previous works pro-
posed different ways to estimate the approximate states, track
state transitions, and design feedback to guide fuzzing muta-
tions. AFLNET [47] uses the server’s response codes to iden-
tify states and retain those variations of original exchanged
messages that can increase either code or state coverage rate.
However, that is not enough to understand the content of the
ciphertext TLS messages. Also, many messages during the
OpenVPN handshake use the same P_CONTROL_V1 type.
StateAFL [17] hashes memory layout during the compiling
process to detect unique states, construct a state machine at
runtime, and prioritize the inputs which can increase new

coverage in the state machine.
BLEEM [53] emphasized sequence-level mutations apart

from the packet-field level, but the authors did not open-source
the work. It designs a data structure to record the state transi-
tions, called SSTG (System State Tracking Graph), and the
state is a pair like C(a)|S(b), implying that after the Server
sent the abstract packet b, the Client sent packet a. Note that
the “abstract packet" retains the enumeration-typed informa-
tion, e.g., Initial[CRY PTO,ACK] + Handshake[CRY PTO],
which is similar to SGFUZZ [5]. When exploring paths to
generate the sequence, newly added state transitions will be
preferred to be chosen, which is like prioritizing the inputs
that can produce new states in STT in SGFUZZ [5].

CHATAFL [16] uses publicly available RFCs and LLMs
to learn message formats, based on which input packets are
generated and guide the fuzzing of the target protocol. The
approach cannot be applied to OpenVPN as there is no official
RFC: only a work-in-progress draft [41].

DY fuzzing [4] proposes a new approach to fuzzing crypto-
graphic protocols, considers the set of abstract DY executions
of the DY attacker as possible test cases, and uses a novel
mutation-based fuzzer to explore this set. The work tested 3
popular TLS implementations, resulting in the discovery of
four novel vulnerabilities.

7 Conclusion

In this work, we took a systematic approach to find attacks
in OpenVPN. We first constructed a detailed message se-
quence chart of the handshake protocol under the UDP and
TCP modes, respectively. We used this information to per-
form systematic adversarial testing with malformed con-
figurations, replay attacks, denial-of-service, resilience to
acknowledgments-related attacks, and packet value modifi-
cations based on packet and protocol semantics. We found
several new attacks: two new denial-of-service attacks due to
the replay of control and acknowledgment packets, the incor-
rect handling of input validation for 17 protocol configuration
options, a scenario where due to an inconsistent view of the
state of the connection, the server sends data prematurely to
the client causing the client to ignore it, and a scenario where
a malicious client configured with weaker authentication can
degrade the performance of a victim client configured with
stronger authentication.

Ethics Considerations

We have informed the OpenVPN developers about our evalua-
tion, and they have studied some of our findings while others
are still under investigation. For example, the improper valida-
tion of the port number in the configuration file was identified
to be a problem in the getaddrinfo function in glibc, and
a patch is now under development by the glibc team.

References

[1] Secure socket tunneling protocol (sstp). https://lear
n.microsoft.com/en-us/openspecs/windows_pr
otocols/ms-sstp/c50ed240-56f3-4309-8e0c-1
644898f0ea8.

[2] Cisco anyconnect client. https://www.cisco.com/
c/en/us/support/security/anyconnect-secur
e-mobility-client-v4-x/model.html, [n. d.].

[3] Openvpn : Security vulnerabilities, cves. https://ww
w.cvedetails.com/vulnerability-list/vendor
_id-3278/Openvpn.html, [n. d.].

[4] Max Ammann, Lucca Hirschi, and Steve Kremer. DY
fuzzing: Formal dolev-yao models meet cryptographic
protocol fuzz testing. Cryptology ePrint Archive, 2023.

[5] Jinsheng Ba, Marcel Böhme, Zahra Mirzamomen, and
Abhik Roychoudhury. Stateful greybox fuzzing. In 31st
USENIX Security Symposium (USENIX Security 22),
Boston, MA, August 2022. USENIX Association.

[6] Thanh Bui, Siddharth Rao, Markku Antikainen, and Tuo-
mas Aura. Client-side vulnerabilities in commercial
vpns. In Secure IT Systems. Springer International Pub-
lishing, 2019.

[7] Jake S. Cannell, Justin Sheek, Jay Freeman, Greg Hazel,
Jennifer Rodriguez-Mueller, Eric J. R. Hou, and Brian J.
Fox. Orchid: A decentralized network routing market.
2019.

[8] Lesly-Ann Daniel, Erik Poll, and Joeri de Ruiter. In-
ferring OpenVPN State Machines Using Protocol State
Fuzzing. In 2018 IEEE European Symposium on Secu-
rity and Privacy Workshops (EuroS&PW). IEEE, 2018.

[9] Jason A. Donenfeld. Wireguard: Next generation kernel
network tunnel. In Proceedings of the 2017 Network
and Distributed System Security Symposium. NDSS’17.,
2017.

[10] Jason A Donenfeld. Formal Verification of the Wire-
Guard Protocol, [n. d.].

[11] Benjamin Dowling and Kenneth G. Paterson. A crypto-
graphic analysis of the wireguard protocol. In Bart Pre-
neel and Frederik Vercauteren, editors, Applied Cryptog-
raphy and Network Security, pages 3–21, Cham, 2018.
Springer International Publishing.

[12] Zakir Durumeric, David Adrian, Ariana Mirian, Michael
Bailey, and J. Alex Halderman. A search engine backed
by internet-wide scanning. CCS ’15, page 542–553,

New York, NY, USA, 2015. Association for Computing
Machinery.

[13] Pasi Eronen, Yoav Nir, Paul E. Hoffman, and Charlie
Kaufman. Internet Key Exchange Protocol Version 2
(IKEv2). RFC 5996, September 2010.

[14] Adam Langley, Mike Hamburg, and Sean Turner. Ellip-
tic Curves for Security. RFC 7748, January 2016.

[15] Ding LI, Chunxiang GU, and Yuefei ZHU. Gene fin-
gerprinting: Cracking encrypted tunnel with zero-shot
learning. IEICE Transactions on Information and Sys-
tems, E105.D, 06 2022.

[16] Ruijie Meng, Martin Mirchev, Marcel Bohme, and Ab-
hik Roychoudhury. Large language model guided proto-
col fuzzing. In NDSS, 2024.

[17] Roberto Natella. StateAFL: fuzzing for stateful network
servers. Empirical Software Engineering, 27(7):191,
2022.

[18] Boring protocol team. Boring protocol: A decentralized
vpn on solana. https://github.com/boringproto
col, [n. d.].

[19] Quarkslab. Openvpn 2.4.0 security assessment. https:
//ostif.org/wp-content/uploads/2017/05/Ope
nVPN1.2final.pdf, 2017.

[20] Reethika Ramesh, Leonid Evdokimov, Diwen Xue, and
Roya Ensafi. VPNalyzer: Systematic Investigation of
the VPN Ecosystem. In Proceedings 2022 Network and
Distributed System Security Symposium, 2022.

[21] Eric Rescorla. Keying Material Exporters for Transport
Layer Security (TLS). RFC 5705, March 2010.

[22] Sylvain Ruhault, Pascal Lafourcade, and Dhekra Mah-
moud. A Unified Symbolic Analysis of WireGuard. In
Proceedings 2024 Network and Distributed System Se-
curity Symposium, San Diego, CA, USA, 2024. Internet
Society.

[23] Security.org. 2024 vpn trends, statistics, and consumer
opinions. https://www.security.org/resources
/vpn-consumer-report-annual/, 2024.

[24] Konstantin Serebryany, Derek Bruening, Alexander
Potapenko, and Dmitry Vyukov. Addresssanitizer: a
fast address sanity checker. In Proceedings of the 2012
USENIX Conference on Annual Technical Conference,
USENIX ATC’12, USA, 2012. USENIX Association.

[25] statista. Usage of virtual private networks (vpn) world-
wide as of 3rd quarter 2024, by country. https:
//www.statista.com/statistics/1382869/use-o
f-virtual-private-networks-vpn-by-country/,
2024.

https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-sstp/c50ed240-56f3-4309-8e0c-1644898f0ea8
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-sstp/c50ed240-56f3-4309-8e0c-1644898f0ea8
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-sstp/c50ed240-56f3-4309-8e0c-1644898f0ea8
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-sstp/c50ed240-56f3-4309-8e0c-1644898f0ea8
https://www.cisco.com/c/en/us/support/security/anyconnect-secure-mobility-client-v4-x/model.html
https://www.cisco.com/c/en/us/support/security/anyconnect-secure-mobility-client-v4-x/model.html
https://www.cisco.com/c/en/us/support/security/anyconnect-secure-mobility-client-v4-x/model.html
https://www.cvedetails.com/vulnerability-list/vendor_id-3278/Openvpn.html
https://www.cvedetails.com/vulnerability-list/vendor_id-3278/Openvpn.html
https://www.cvedetails.com/vulnerability-list/vendor_id-3278/Openvpn.html
https://github.com/boringprotocol
https://github.com/boringprotocol
https://ostif.org/wp-content/uploads/2017/05/OpenVPN1.2final.pdf
https://ostif.org/wp-content/uploads/2017/05/OpenVPN1.2final.pdf
https://ostif.org/wp-content/uploads/2017/05/OpenVPN1.2final.pdf
https://www.security.org/resources/vpn-consumer-report-annual/
https://www.security.org/resources/vpn-consumer-report-annual/
https://www.statista.com/statistics/1382869/use-of-virtual-private-networks-vpn-by-country/
https://www.statista.com/statistics/1382869/use-of-virtual-private-networks-vpn-by-country/
https://www.statista.com/statistics/1382869/use-of-virtual-private-networks-vpn-by-country/

[26] Fabio Streun, Joel Wanner, and Adrian Perrig. Eval-
uating Susceptibility of VPN Implementations to DoS
Attacks Using Adversarial Testing. In Proceedings 2022
Network and Distributed System Security Symposium,
2022.

[27] Deepernetwork team. Deeper network decentralized
vpn. https://shop.deeper.network/pages/dece
ntralized-vpn, [n. d.].

[28] Express VPN team. Expressvpn. https://www.expr
essvpn.com/, [n. d.].

[29] Gitlab team. Peach fuzzing platform. https://gitl
ab.com/gitlab-org/security-products/protoc
ol-fuzzer-ce, [n. d.].

[30] HOPRnet team. Hopr: Blockchain data protection and
privacy. https://hoprnet.org/, [n. d.].

[31] LLVM team. libfuzzer – a library for coverage-guided
fuzz testing. https://llvm.org/docs/LibFuzzer.
html, [n. d.].

[32] LLVM/Clang team. Clang 15.0.0 documentation, unde-
fined behavior sanitizer. https://clang.llvm.org/d
ocs/UndefinedBehaviorSanitizer.html, [n. d.].

[33] Mysterium team. Mysterium vpn. https://www.myst
eriumvpn.com/, [n. d.].

[34] NordVPN team. Nordvpn. https://nordvpn.com/,
[n. d.].

[35] OpenVPN team. Community supported openvpn ver-
sions. https://community.openvpn.net/openvpn/
wiki/SupportedVersions, [n. d.].

[36] OpenVPN team. The open-sourced openvpn github
repository. https://github.com/OpenVPN/openvpn
/blob/master/, [n. d.].

[37] OpenVPN team. Openvpn 2.6 manual. https://open
vpn.net/community-resources/reference-man
ual-for-openvpn-2-6/, [n. d.].

[38] OpenVPN team. Openvpn access server. https://op
envpn.net/access-server/, [n. d.].

[39] OpenVPN team. Openvpn development website. https:
//build.openvpn.net/doxygen/network_protoc
ol.html, [n. d.].

[40] OpenVPN team. Openvpn protocol. https://openvp
n.net/community/, [n. d.].

[41] OpenVPN team. Work-in-progress github repository:
building rfc for openvpn. https://github.com/Ope
nVPN/openvpn-rfc, [n. d.].

[42] Surfshark team. Surfshark. https://surfshark.co
m/, [n. d.].

[43] Tcpdump team. Tcpdump documentation. https:
//www.tcpdump.org/, [n. d.].

[44] Twisted team. Twisted: An event-driven networking
engine. https://twisted.org/, [n. d.].

[45] William J. Tolley, Beau Kujath, Mohammad Taha Khan,
Narseo Vallina-Rodriguez, and Jedidiah R. Crandall.
Blind In/On-Path attacks and applications to VPNs. In
30th USENIX Security Symposium (USENIX Security
21). USENIX Association, August 2021.

[46] Andrew J. Valencia, Glen Zorn, William Palter, Gurdeep-
Singh Pall, Mark Townsley, and Allan Rubens. Layer
Two Tunneling Protocol "L2TP". RFC 2661, August
1999.

[47] Abhik Roychoudhury Van-Thuan Pham, Marcel Bohme.
AFLNET: A Greybox Fuzzer for Network Protocols. In
International Conference on Software Testing, Valida-
tion and Verification (ICSTVV). IEEE, 2020.

[48] Sven van Valburg, Erik Poll, and Joeri de Ruiter. Master
thesis computer science: Fuzzing openvpn. 2018.

[49] Guido Vranken. Openvpn fuzzing with libfuzzer reposi-
tory. https://github.com/guidovranken/openvp
n/tree/fuzzing, 2017.

[50] Ka Lok Wu, Man Hong Hue, Ngai Man Poon, Kin Man
Leung, Wai Yin Po, Kin Ting Wong, Sze Ho Hui, and
Sze Yiu Chau. Back to school: On the (In)Security of
academic VPNs. In 32nd USENIX Security Symposium
(USENIX Security 23), pages 5737–5754, Anaheim, CA,
August 2023. USENIX Association.

[51] Diwen Xue, Reethika Ramesh, Arham Jain, Michalis
Kallitsis, J. Alex Halderman, Jedidiah R. Crandall, and
Roya Ensafi. OpenVPN is open to VPN fingerprinting.
In 31st USENIX Security Symposium (USENIX Security
22), Boston, MA, August 2022.

[52] Nian Xue, Yashaswi Malla, Zihang Xia, Christina Pöp-
per, and Mathy Vanhoef. Bypassing tunnels: Leaking
VPN client traffic by abusing routing tables. In 32nd
USENIX Security Symposium (USENIX Security 23),
Anaheim, CA, August 2023.

[53] Feilong Zuo et al. Zhengxiong Luo, Junze Yu. BLEEM:
Packet Sequence Oriented Fuzzing for Protocol Imple-
mentations. In USENIX Security Symposium (USENIX
Security), 2023.

[54] Glen Zorn, Gurdeep-Singh Pall, and Kory Hamzeh.
Point-to-Point Tunneling Protocol (PPTP). RFC 2637,
July 1999.

https://shop.deeper.network/pages/decentralized-vpn
https://shop.deeper.network/pages/decentralized-vpn
https://www.expressvpn.com/
https://www.expressvpn.com/
https://gitlab.com/gitlab-org/security-products/protocol-fuzzer-ce
https://gitlab.com/gitlab-org/security-products/protocol-fuzzer-ce
https://gitlab.com/gitlab-org/security-products/protocol-fuzzer-ce
https://hoprnet.org/
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://www.mysteriumvpn.com/
https://www.mysteriumvpn.com/
https://nordvpn.com/
https://community.openvpn.net/openvpn/wiki/SupportedVersions
https://community.openvpn.net/openvpn/wiki/SupportedVersions
https://github.com/OpenVPN/openvpn/blob/master/
https://github.com/OpenVPN/openvpn/blob/master/
https://openvpn.net/community-resources/reference-manual-for-openvpn-2-6/
https://openvpn.net/community-resources/reference-manual-for-openvpn-2-6/
https://openvpn.net/community-resources/reference-manual-for-openvpn-2-6/
https://openvpn.net/access-server/
https://openvpn.net/access-server/
https://build.openvpn.net/doxygen/network_protocol.html
https://build.openvpn.net/doxygen/network_protocol.html
https://build.openvpn.net/doxygen/network_protocol.html
https://openvpn.net/community/
https://openvpn.net/community/
https://github.com/OpenVPN/openvpn-rfc
https://github.com/OpenVPN/openvpn-rfc
https://surfshark.com/
https://surfshark.com/
https://www.tcpdump.org/
https://www.tcpdump.org/
https://twisted.org/
https://github.com/guidovranken/openvpn/tree/fuzzing
https://github.com/guidovranken/openvpn/tree/fuzzing

A Attacks against OpenVPN

Several attacks were previously found against OpenVPN, and
we list the most representative attacks in Table 2.

B OpenVPN Opcodes and Other Fields

Table 3 shows a summary of the Opcode name, value, and de-
scription. Fig. 4 and Fig. 5 display the packet header structure
of the OpenVPN layer in UDP and TCP mode respectively.

 Key ID Session ID
Message
Packet-ID

Array Length
Packet-ID ArrayOpcode

8-byte 5-bit 3-bit 1-byte 4-byte * length

Remote
Session ID

Message
Packet-ID TLS layer

8-byte 4-byte

Figure 4: UDP mode OpenVPN control packet structure

 Key IDOpcode

5-bit 3-bit

plen

2-byte

Session ID
Message
Packet-ID

Array Length
Packet-ID Array

8-byte 1-byte 4-byte * length

Remote
Session ID

Message
Packet-ID TLS layer

8-byte 4-byte

Figure 5: TCP mode OpenVPN control packet structure

In the UDP mode, the header of OpenVPN control packets
starts with a 5-bit Opcode denoting the OpenVPN packet type,
and a 3-bit Key ID denoting the corresponding data channel
key’s identifier. In the TCP mode, there is a 2-byte field plen
before the Opcode field, which denotes the length of the fol-
lowing OpenVPN layer content. Session ID is the session
identifier created by the source side for the VPN connection
attempt, e.g., if the message is sent from the client, then it
is a random number created by the client . There is another
field Remote Session ID in the OpenVPN header, which is the
counterpart of Session ID, i.e., the session identifier created
by the destination part. Note that the first message from the
client does not have that field since the Remote Session ID
is unknown at this time. Message Packet-ID Array Length
and Message Packet-ID Array keep track of the number of
packets in the array and the array of received messages from
the other party. These packet identifiers and arrays are used
by the acknowledgment mechanism of OpenVPN, which we
describe in Section 3.2. Because several packets have the
same type P_CONTROL_V1, Message Packet-ID is used to
uniquely identify each type of packet with an order number
in the protocol logical sequence of packets. Note that the
value remains the same if the packet is retransmitted, as it
is associated with the logical order and not the number of
packets sent. The value is used by the Message Packet-ID
Array field present on all packets which includes from 0 to 8
elements. All the OpenVPN control channel messages except

the P_ACK_V1 messages have this field in the OpenVPN
header.

The OpenVPN control packet header encapsulates either
a blank value or the TLS layer records, e.g., Client Hello,
Server Hello, Change Cipher Spec, and Application Data. We
describe them in detail in Section 3.2.

If tls-auth is enabled, two additional fields are present in
the OpenVPN header: HMAC and Replay-Packet-ID. HMAC
helps protect the integrity of control channel packets, while
Replay-Packet-ID is used to detect that the packet is a replay.

C OpenVPN Handshake MSC (TCP mode)

We provide the constructed MSC of the handshake in the TCP
mode in Fig. 6. The main difference between the UDP and
TCP modes is that the TCP mode will send several OpenVPN
messages inside one TCP packet, such as M6, M8 and M10,
while in the UDP mode, one UDP packet only includes one
OpenVPN packet. Compared to M5 in the UDP mode, M6 in
the TCP mode includes two OpenVPN packets, although the
information they carry should be similar to M5 in the UDP
mode. One side effect of encapsulating several OpenVPN
messages in one TCP packet is that the ACK messages differ a
bit: now in the TCP mode, one more P_ACK_V1 is generated,
and the MID_array values are different.

D The Inferred State Machines

Client and server finite state machines. Since some mes-
sages can be sent in parallel, we also provide the inferred
finite state machine (FSM) of both the OpenVPN server and
client (Fig. 7 and Fig. 8). We use the notation “condition
(receiving a message) / action (sending a message)" on the
arrow from one state to the other to denote the condition and
action effect of a state transition, Mi symbols correspond to
the messages in Fig. 2.

SS0 SS1 SS2 SS3 SS4

SS8 SS7 SS6 SS5

M1/ M2 M3 / M4, M5

timeout / M4, M5

M6(ACK) M7 / M10(ACK)

timeout / M11

M9 / M11, M13

timeout / M11, M13

M12(ACK)M14(ACK) / M15

timeout / M5 M8/ M11

timeout / M13

SS9
M16(ACK)

timeout / M15

data messagedata message

M17 / M18, M15

Figure 7: Inferred FSM of OpenVPN Server (UDP mode)

Client Server

select sidc , MID = 0, MID_array = NULL

M1= P_CONTROL_HARD_RESET_CLIENT_V2, sidc, MID_array, MID

select sids , MID = 0, MID_array = [0]

M2= P_CONTROL_HARD_RESET_SERVER_V2, sids, MID_array, sidc, MID

MID = 1, MID_array = [0], generate aG in tls_client_hello

M3= P_CONTROL_V1, sidc, MID_array, sids, MID, tls_client_hello

MID = 1, MID_array = [1,0], generate bG in tls_sever_hello,
calculate b(aG), derive Khs from baG

M4= P_CONTROL_V1, sids, MID_array, sidc, MID, tls_server_hello,
tls_change_cipher_spec, [extensions]Khs

M5= P_ACK_V1, sidc, MID_array = [1,0], sids

calculate a(bG), derive Khs from abG MID1 = 2, MID2 = 3, MID_array = [1,0]

M6= P_CONTROL_V1, sids, MID_array, sidc, MID1, [Certi f icateRequest,Certi f icates]Khs ,
P_CONTROL_V1, sids, MID_array, sidc, MID2, [Certi f icateVeri f y,Finished]Khs

confirm Certi f icateVeri f y, Finished
M7= P_ACK_V1, sidc, MID_array = [2,1,0], sids,

MID1 = 2, MID2 = 3, MID3 = 4, MID_array = [3,2,1,0]
derive Kapp from abG, generate Rc

M8= P_CONTROL_V1, sidc, MID_array, sids, MID1, tls_change_cipher_spec, [Certi f icatec]Khs ,
P_CONTROL_V1, sidc, MID_array, sids, MID2, [Certi f icateVeri f y,Finished]Khs ,
P_CONTROL_V1, sidc, MID_array, sids, MID3, [client version, etc., Rc]Kapp

confirm Certi f icateVeri f y, Finished,
derive Kapp from baG

M9= P_ACK_V1, sids, MID_array = [2,1,0], sidc

MID1 = 4, MID_array1 = [3,2,1,0],
generate tls_session_ticket
MID2 = 5, MID_array1 = [4,3,2,1], generate Rs

M10= P_CONTROL_V1, sids, MID_array, sidc, MID1, [tls_session_ticket]Kapp
P_CONTROL_V1, sids, MID_array, sidc, MID2, [Rs]Kapp

M11= P_ACK_V1, sidc, MID_array = [4,3,2,1], sids

M12= P_ACK_V1, sidc, MID_array = [5,4,3,2], sids

MID = 5, MID_array = [5,4,3,2]

M15= P_CONTROL_V1, sidc, MID_array, sids, MID, [PUSH_REQUEST]Kapp

M16= P_ACK_V1, sids, MID_array = [5,4,3,2,1,0], sidc

MID = 6, MID_array = [4,3,2,1], calculate Kdata

M13= P_CONTROL_V1, sids, MID_array, sidc, MID, [PUSH_REPLY, configuration details]Kapp

calculate Kdata
M14= P_ACK_V1, sidc, MID_array = [6,5,4,3], sids

Figure 6: MSC of OpenVPN handshake (TCP mode, default TLS configuration), some fields omitted for simplicity.

Table 2: Representative Vulnerabilities of OpenVPN

Category Details Vulnerable Versions Fixed or Not

DoS Flooding with P_CONTROL_HARD_RESET_CLIENT_V2
packets to the server can deny data transmission and connec-
tion establishment [26]

2.5.1 Yes (con-
firmed in
testing and
release notes
of v2.6.)

DoS Authenticated remote attacker sending a certificate with an
embedded NULL character can cause a server crash (CVE-
2017-7522) [49]

before 2.4.3 and be-
fore 2.3.17

Yes

DoS Authenticated client sending 232 packets can cause the exhaus-
tion of Packet Identifiers thus the server crash (CVE-2017-
7479) [19]

before 2.3.15 and be-
fore 2.4.2

Yes

VPN Traffic
Fingerprint-
ing

OpenVPN flows can be identified based on protocol features
like Opcode byte pattern, uniform ACK packet size, and active
probing getting the server’s response [51]

all No

MitM Attacks TCP connections forwarded through a VPN tunnel can be
hijacked by connection inference and sending spoofed packets
[45]

all partially fixed
by certain OS
(e.g. MacOS)

Operating Sys-
tem Exploits

Manipulating the routing policy can lead to traffic sent in
plaintext bypassing the VPN encryption tunnel [52]

all partially fixed
by certain OS
(e.g. Android)

Memory bugs Stack buffer overflow, data leakage [49] before 2.4.3 and be-
fore 2.3.17

Yes

Table 3: OpenVPN Opcode Information

Opcode Name Value Description

P_CONTROL_HARD_RESET_CLIENT_V2 7 Client hard reset
P_CONTROL_HARD_RESET_SERVER_V2 8 Server response
P_CONTROL_V1 4 Control packet
P_ACK_V1 5 Acknowledgement

packet
P_DATA_V2 9 Data packet
P_CONTROL_SOFT_RESET_V1 3 Soft reset, a graceful

transition from the old
to new key

P_CONTROL_HARD_RESET_CLIENT_V3 10 Hard reset with client-
specific tls-crypt key

P_CONTROL_HARD_RESET_CLIENT_V1 1 Deprecated
P_CONTROL_HARD_RESET_SERVER_V1 2 Deprecated
P_DATA_V1 6 Deprecated
P_CONTROL_WKC_V1 11 Deprecated

CS0 CS1 CS2 CS3

CS7 CS6 CS5 CS4

to connect / M
1

timeout / M1

M2 / M3

timeout / M3

M4 / M6(ACK) M5 / M7, M8, M9

timeout / M7, M8, M9

M10 (ACK)

timeout / M8, M9

M11 / M12(ACK)

timeout / M9

M13 / M14(ACK)M15 / M16(ACK)

data message

timeout / M17

Figure 8: Inferred FSM of OpenVPN client (UDP mode)

E Additional Results

E.1 Previous Attack not Fixed for TCP Mode

We first investigate the status of a previous DoS attack.
The work in [26] showed that flooding the server with
P_CONTROL_HARD_RESET_CLIENT_V2 packets (M1)
for OpenVPN (version 2.5.1), will easily cause a decrease in
throughput and prevent legitimate connection attempts. Re-
call that M1 is the first packet sent from the client to hard reset
a VPN connection with the server (see Fig. 2).

During our experiments, we found that while the attack has
been fixed when OpenVPN is configured in the UDP mode,
the attack is still possible in the TCP mode. In the UDP mode
the aforementioned vulnerability was patched with a replay
limit check of 100 initial connection attempts per 10 seconds:
this patch is enabled and works regardless if OpenVPN was
configured with the tls-auth option. Recall that the tls-auth
configuration option protects the integrity of control packets
(including M1) with an HMAC based on a static secret pre-
shared key between the client and the server.

In the TCP mode, the flooding degrades the availability of
the server. Specifically, the OpenVPN data channel through-
put of a legitimate victim user can be significantly decreased
(e.g. without tls-auth and attack sending rate 15 MB/s: from
220 MB/s to 110 MB/s, with tls-auth and attack sending
rate 12 MB/s: from 220 MB/s to 115 MB/s) and the at-
tack can trigger the server logging a state “Fatal TLS error
(check_tls_errors_co), restarting”.

E.2 Attack Result Google Cloud
We summarize the results of replay attack evaluation in
Google Cloud in Table 4.

We present results for the DOS attacks with
P_CONTROL_V1 and P_CONTROL_V1 packets con-
ducted in more realistic network conditions in Google Cloud,
for OpenVPN configured with UDP mode.

In UDP mode without tls-auth, sending 10,000,000
P_CONTROL_V1 packets at the rate of around 17 MB/s
can almost block Client2’s data channel, compared with
the normal throughput of 32 MB/s. Replay of 10,000,000
P_ACK_V1 packets, which are shorter packets, at the rate of
1.5 MB/s can decrease Client2’s data channel throughput to
12 MB/s.

In UDP mode with tls-auth enabled, sending 10,000,000
P_CONTROL_V1 packets at the rate of around 20 MB/s can
almost block Client2’s data channel, compared with 18 MB/s
without attack. While the server will log “TLS Error: in-
coming packet authentication failed from [IP:port address].
Authenticate/Decrypt packet error: bad packet ID (may be
a replay)", it didn’t do anything to ban such a replay attack.
Replay of 10,000,000 P_ACK_V1 packets, which are shorter
packets, at the rate of 5 MB/s can almost block Client2’s data
channel throughput with similar logs on the server side.

E.3 Table of the Configuration Options with
Improper Validation

We provide the table of the configuration options with im-
proper validation for an input value of zero or over-large(270)
in Table 5.

Table 4: Replay attack effects on the data channel throughput of the other legitimate client.

Mode tls-auth Replay Packet
Type

Attack Sending
rate (MB/s)

Throughput without at-
tack (MB/s)

Throughput under attack
(MB/s)

UDP N P_CONTROL_V1 17 32 <1
UDP N P_ACK_V1 1.5 32 12
UDP Y P_CONTROL_V1 20 18 <1
UDP Y P_ACK_V1 5 20 <1
TCP N P_CONTROL_V1 212 168 <1
TCP N P_ACK_V1 50 160 30
TCP Y P_CONTROL_V1 60 116 <1
TCP Y P_ACK_V1 10 116 30

Table 5: Configuration options with improper validation of a zero and/or over-large (270) input value

Configuration Option Name Server or Client Con-
figuration

Meaning

hand-window both Data channel key exchange must finalize within n seconds of
handshake initiation by any peer (default=60)

max-routes-per-client Server Allow a maximum of n internal routes per client
mute both Log at most n consecutive messages in the same category
nice both Change process priority (>0 = lower, <0 = higher)
ping-exit both Exit if n seconds pass without reception of remote ping
ping both Ping remote once every n seconds over TCP/UDP port
ping-restart both Restart if n seconds pass without reception of remote ping
reneg-bytes both Renegotiate data chan. key after n bytes sent and recvd
reneg-pkts both Renegotiate data chan. key after n packets sent and recvd
reneg-sec max [min] both Renegotiate data chan. key after at most max (default=3600)

seconds
tls-timeout both Packet retransmit timeout on TLS control channel if no ACK

from remote within n seconds (default=2)
tran-window both Transition window – old key can live this many seconds after new

key renegotiation begins (default=3600)
tun-mtu-extra both Assume that tun/tap device might return as many as n bytes more

than the tun-mtu size on read (default TUN=0 TAP=32)
verb both Set output verbosity to n (default=1), ...,:6 to 11 – debug messages

of increasing verbosity
script-security level both Where level can be 0–..., 1–...,2–:..., 3 – allow password to be

passed to scripts via env
max-clients Server Allow a maximum of n simultaneously connected clients

	Introduction
	Background
	OpenVPN Overview
	Security of OpenVPN

	Learning OpenVPN Message Sequence Chart of Connection Establishment
	Our Approach
	OpenVPN Connection Establishment

	FUZZVPN Design
	Design Goals and High-level Overview
	Attack Strategies Supported
	Analyzing the Behavior

	Results
	Methodology
	New Denial-of-Service Attacks
	Improper Input Validation for Configurations
	Server Prematurely Sends Data
	ACK-related Attacks
	Performance Attacks

	Related Work
	Conclusion
	Attacks against OpenVPN
	OpenVPN Opcodes and Other Fields
	OpenVPN Handshake MSC (TCP mode)
	The Inferred State Machines
	Additional Results
	Previous Attack not Fixed for TCP Mode
	Attack Result Google Cloud
	Table of the Configuration Options with Improper Validation

